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1982) but again this method is not practicable for 
general spectroscopic use since the signal-to-noise 
ratio would be very poor. The third method which 
seeks to control the Bragg width by oblique Bragg 
reflections has been widely used (Renninger, 1961, 
1967; Kikuta & Kohra, 1970; Kikuta, 1971; Mat- 
sushita, Kikuta & Kohra, 1971; Hashizumi & Kohra, 
1971 ; Bonse & Graeff, 1973 ; Kohra, 1972). Kohra & 
Kikuta (1968) summarize fairly completely the rel- 
evant literature so that not all references need be 
mentioned here. In essence, cutting the surface of a 
crystal at angle a to the Bragg planes reduces the 
range of Bragg reflection by a factor b ~/2, where 

Io b = sin (0 - a) /s in (0 - a). Oblique incidence at ~ to 
the surface yields a narrowing factor of ten at a Bragg 
angle 0 =60 ° but such small glancing angles are 
difficult to achieve, result in specular external reflec- 
tion and, by definition, do not permit the tuneability 
necessary for spectroscopy. However, it would appear 
to be possible to achieve large narrowing factors by 
combining this method and the present one. For 
example, Kikuta (1971) achieved b = 573 and we 
demonstrate herein a further factor of four so that 
the total narrowing in a combined device could be 
4b I/2= 100 with the 422 reflection from silicon. Since 
the energy resolution of a single-crystal Bragg spec- 
trometer based on the 422 Bragg reflection is 1.4 × 
10 -6 (Beaumont & Hart, 1974), the energy resolution 
of an oblique-offset multiple-reflection Bragg spec- 
trometer would then be 1.4 × 10-8; quite adequate for 
many experiments which have been proposed using 
synchrotron radiation sources, for example, the 
measurement of inelastic X-ray scattering due to 

phonons. The construction has the added advantage 
that setting up could be done in the low-resolution 
mode with high intensity and the resolution would 
be varied to suit the problem in hand. 
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Abstract 

It has been commonly admitted that the theories of 
X-ray propagation in distorted crystals based on the 
principles of geometrical optics [Penning & Polder 
(1961). Philips Res. Rep. 16, 419--440; Kato (1963). 
J. Phys. Soc. Jpn, 18, 1785-1791; Kato (1964). J. 
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Phys. Soc. Jpn, 19, 67-71, 971-985] were applicable 
only in the transmission (Laue) case. It is demon- 
strated in this paper that they can be applied more 
generally in all cases where beams can be defined, 
i.e. also in the Bragg case outside the total reflection 
range. Simple formulae for the case of a constant 
strain gradient in symmetric Bragg geometry are 
derived from a general formulation of the basic 
equation of geometrical theory using a new universal 
parameter a. They are verified by solving Takagi's 
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508 PROPAGATION OF X-RAY BEAMS IN DISTORTED CRYSTALS. I 

equations numerically. The results are visualized by 
means of an original method of ray tracing directly 
from Takagi's equations. 

1. Introduction 

The propagation of X-rays in deformed crystals has 
been the subject of many theoretical and experimental 
studies since 1961 when Penning & Polder first pub- 
lished their theory of geometrical optics of wavefields 
based on an analogy with the propagation of light in 
inhomogeneous media. Wave-optical considerations 
developed later by Kato (1963, 1964), Kambe (1965, 
1968) and Chukhovskii & Shtolberg (1970) provided 
a more rigorous foundation for Penning & Polder's 
theory and showed that its basic equation could also 
be derived from an Eikonal approach. All these 
theories assumed that the wave vectors of wavefields 
propagating in the crystal were real and they were 
generally supposed to be valid only in the trans- 
mission (Laue) case. Detailed reviews of geometrical 
optics theories can be found in articles by Malgrange 
(1975) and Hart (1980); the latter also contains a 
survey of experimental works and a bibliography of 
the subject. 

In 1964, Bonse published his geometrical theory 
(Bonse, 1964a), based on a variational principle, 
which allowed for wavefields with wave vectors hav- 
ing large imaginary parts. Therefore, it was supposed 
to be fully applicable in the reflection (Bragg) case, 
including incidence angles lying within the total 
reflection range. On the other hand, it could be regar- 
ded as a generalization of Penning-Polder theory, 
especially since for wavefields with real wave vectors 
(in the Bragg case those excited outside the total 
reflection range) its basic equation reduced to that of 
other geometrical theories (Bonse, 1964a). 

However, as was soon demonstrated by Penning 
(1966) (and recently confirmed by Chukhovskii, 
1981), it is not possible to describe wavefields with 
complex wave vectors in terms of classical ray con- 
cepts of geometrical optics. Nevertheless, Bonse's 
theory provided a valid description of the propagation 
of wavefields with real wave vectors which are gener- 
ated in the Bragg case outside the total reflection 
range (in the flanks of the rocking curve). Therefore, 
it could be successfully applied for calculations of 
beam trajectories in a bent crystal (Bonse, 1964b; 
Bonse & Graeff, 1973) or a crystal with a dislocation 
line (Bonse, 1964c), demonstrating the effect of 
deflection of X-rays to the crystal surface. 

On the other hand, all the other theories of 
geometrical optics were used exclusively to interpret 
the results of experiments performed in the Laue case. 
As a consequence of this 'division of application field' 
a view has developed throughout the literature that 

the range of applicability of Penning-Polder theory 
was limited to the Laue case.* 

The aim of the present work is to show that Pen- 
ning-Polder theory can be used without any difficulty 
to describe X-ray propagation in slightly distorted 
crystals not only in the transmission case but in the 
Bragg case as well, provided that the incident angle 
is chosen outside the total or the 'quasitotal '  (for 
absorbing cases) reflection range. We shall develop 
the basic equations of the theory for ray paths and 
intensities in the Bragg case and compare the so- 
obtained trajectories with the corresponding numeri- 
cal solutions of Takagi's equations (Takagi, 1969), 
using as a helpful tool an original method of ray 
tracing (§ 3). The demonstrated general applicability 
of Penning-Polder theory will be exploited in the 
following paper (Gronkowski & Malgrange, 1984) 
dealing with the case of strong distortion and the 
phenomenon of new wavefield creation. 

2. Geometrical optics 

( a ) Conditions of  applicability 

Geometrical optics can only be used when beams 
can be introduced. Let us consider, for example, a 
plane wave limited by a slit of width equal to e. In 
the air the width of the beam given by the slit is 
constant as long as the path length is smaller than 
e2/A (where A is the wavelength) and only Fresnel 
diffraction phenomena may appear on the edges of 
the beam. Beyond this path length the beam diverges 
with an angle A/e because of diffraction (Fraunhofer 
diffraction). Such diffraction phenomena have been 
studied by Authier & Malgrange (1966) in the case 
of X-ray diffraction in perfect crystals where the diver- 
gence of the beam is amplified by a factor of the order 
of A sin 0B/A for the exact Bragg incidence (where 
A is the extinction length) which decreases rapidly 
with the departure from the Bragg angle. Con- 
sequently, the path length beyond which the beam 
diverges is of the order of e2/A sin 0~ for Bragg 
incidence and increases with the departure from the 
Bragg angle. 

A generalization of the calculations due to Authier 
& Malgrange (1966) to the case of distorted crystals 
is not straightforward. However, some of their quali- 
tative conclusions can be readily extended to distorted 
crystals, providing an explanation of the broadening 
of the beam visible in some cases (cf. Figs. 6a, b, c). 
This phenomenon will be the subject of a separate 
paper. 

* Perhaps the only exception is a short remark which can be 
found in the review article by Hart (1980, p. 250): 'Agreement with 
theory, both in the Laue case and in the flanks of the Bragg-case 
rocking curve (when the same ray paths are generated), indicates 
very clearly the value of concentrating upon the details of wavefield 
propagation rather than upon the detailed diffraction geometry, 
which is relatively unimportant.' 
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( b ) Basic equations 

The basic equat ion of geometrical optics of  X-rays 
can be written most generally in the form given by 
Penning & Polder (1961) 

d ( 1 / s c -  ~:) = 2/3 dx, ( l )  

where x is the coordinate  along the reflecting planes, 
/3 is the strain gradient  defined by the formula  

1 a2(h. u) = (2) 
/3 k f ( x hX~)  '/2 c o s  Oa OSo ¢3Sh 

with k = l / h  the wave vector of the radiat ion,  C the 
polarizat ion constant,  0s the Bragg angle, Xh and X,; 
the Fourier  coefficients of the dielectric susceptibil i ty 
X, u the displacement  vector, h the diffraction vector, 
Sh and So the coordinates along the reflected and 
refracted directions, respectively. 

Note that  here the definition for /3 due to Kato 
(1964) is used;  it differs from that of Penning & Polder 
only by the sign. 

s c is defined as the ratio of the ampli tudes Dh and 
Do of the reflected and refracted waves, respectively, 

~= D , /  Do. (3) 

The ~: parameter  (Fig. 1) determines the posit ion of 
the tie point  on the dispersion surface and con- 
sequently the physical characteristics of the corre- 
sponding wavefields: its type (1 or 2) since s c is 
negative for wavefield 1 and positive for wavefield 2, 
and its direction of propagation,  s c is in general com- 
plex either due to absorpt ion and then its imaginary 
part is small or due to 'extinction' ,  meaning here the 
strong damping  phenomenon  appear ing in the crystal 
in the total reflection range in the Bragg case. 

Equat ion (1) and the quasi-classical description of 
wavefield propagat ion in terms of geometrical optics 
is valid only for wavefields with almost real s c values.* 

* A practical estimate of the maximum allowable value for the 
ratio of the imaginary part to the real part of s c was found to be 0.1. 

~ 4  -3 _, -J 

/ \ 
/ \ 

/ , 

; \ ,  

/ \ 
\ 

. /  \0 

Fig. 1. Variation of ¢ as a function of tie-point position on the 
dispersion surface (after Penning & Polder, 1961). ¢<0 for 
wavefield (1), ¢ > 0 for wavefield (2). 

For wavefields with large imaginary parts of ~ which 
are excited only in the total reflection range or very 
close to it in the Bragg case, it is not possible to 
construct  a ray theory as shown by Penning (1966). 
Therefore,  ( 1 ) describes well the propagat ion of  wave- 
fields which are generated in the crystal in the Laue 
case and outside the total reflection range in the Bragg 
case. It should be stressed that it is not important  
how a wavefield with an almost real given value of s c 
has been generated in the Laue case or Bragg case, 
symmetr ic  or asymmetr ic  reflection. Once it exists in 
the crystal it propagates  according to (1) which gives 
the variat ion of s c, that  is the variation of  the tie-point 
position, along the dispersion surface. 

Let us introduce a new parameter  a (Malgrange,  
1975), 

a =½(1/sc-~) .  (4) 

Then (1) assumes a part icularly simple form 

da  =/3 dx. (5) 

The parameter  a has a very simple geometric rep- 
resentation. Let us consider a given point  P on the 
dispersion surface (Fig. 2a)  and draw through it a 
straight line parallel to the reflecting planes and inter- 
secting the dispersion surface in the vacuum (T~) in 
Q. Then it can be shown very easily that  

C(xhX~) '/2 
LQ = a = a/2A sin 0~, (6) 

)t sin 20B 

where 

A = A cos On/C(XhXa) '/2. (7) 

Equat ion (5) gives the variation of Q along T6 and 
consequent ly  the variat ion of the t ie-point posit ion 
on the dispersion surface once the initial point  is 
given. The initial posit ion of the tie point  is deter- 
mined by the incidence conditions. It is described by 
a~, the initial value of  a at the entrance surface: 

and 

a,=½(l/~,-~,) (8) 

~, = ( 3'o/I 3',, I) ' /~(I c I / C ) ( x ~ x ~ ) ' / V  xs 

x{~,±[n~, + s ( ~ ) ] ' / ~ } s ( ~ ) ,  (9) 

where S(3"h) is equal to 1 if 3 'h>0 (Laue case) and 
-1  if 3'h < 0  (Bragg case) and r/i is the initial value 
of the parameter  r/: 

,7, = ( 3"o/13"hl) ' /211f  l( x~x~) '/2 

X[aOsin2OB--(Xo/2)(3'h/rO--1)], (10) 

AO = 0 -- 0B is the deviation from the Bragg angle, 3'0 
and 3'h are the direction cosines of the incident and 
reflected beams respectively, Xo, Xh, Xa are respectively 
the 0, h and - h  Fourier  coefficients ofx .  In the special 
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case of a constant strain gradient /3, the general 
equation (5) becomes 

a ( x )  = ai + /3x. (l 1) 

The beam trajectories are sections of hyperbolae given 
by the equation (Malgrange, 1975) 

[/3z/ tan 0n:F(l +a2)l/212--(/3x +ai) 2= 1. (12) 

In (9) and (12) the upper (lower) sign corresponds 
to wavefield l (2). In the transmission (Laue) case, 
an incident beam with a departure AO from the Bragg 
angle excites on the dispersion surface in vacuum 
(T~) a point M and induces in the crystal two wave- 
fields of different types ( l, 2) with respective tie points 
P, and P2 (Fig. 2a). The lines drawn parallel to the 

0 Z' 

P_ 

H/ \o 
(a) 

H/ \o 
(b) 

Fig. 2. Geometrical interpretation of the parameter a, where 
a(P) = LQ/(2A sin 0a). (a) Laue case, (b) Bragg case. 

reflecting planes from Pl and P2 cut T~ at Q, and Q2 
and one deduces from (6) that 

ai, = L Q , ( 2 A  sin OB), ai2= LQ2(2A sin On), (13) 

ai, and an can also be calculated from (8) and (9). 
The beam paths in the crystal are hyperbolae given 
by (12). The associated tie points move from PI and 
P2 to P~ and P~, respectively. They are related to Q'~ 
and Q~ determined from QiQ'l = Q2Q'2. 

In the reflection (Bragg) case an incident beam 
with a departure from Bragg angle AO outside the 
total reflection range induces two tie points PiA and 
Pin on the same branch of the dispersion surface (Fig. 
2b) depending on the sign of rh. Only one of the two 
excited wavefields is directed towards the inside of 
the crystal (here P~A or P2n). In geometrical optics 
where narrow beams are considered the other wave- 
field has only to be taken into account if the beam is 
reflected at the exit surface. 

( c) The symmetr ic  Bragg case 

Let us now describe in detail the application of 
geometrical optics for the especially simple case of 
Bragg diffraction in a thick centrosymmetric crystal 
deformed with a constant strain gradient/3, assuming 
for simplicity C = 1 and zero absorption. 

Formulae (9) and (10) become 

~, = n , -  s ( n i ) ( n ~ -  1) '/2 (14) 

'1, = ( AO sin 20,  +Xo)/lxhl, (15) 

where S(r/~) = 1 if r / ,>0  and S(rl,) = -1  if r/~ < 0. As 
the incidence angle deviation AO lies outside the total 
reflection region, we always have In, I > 1. If we sub- 
stitute (14) in (8) we obtain the formula for the initial 
value of ai as a function of r/i: 

a, = S(r/,)(rl 2 -  1) '/2 (16) 

(Note that in the symmetric Laue case we would have 
simply ai = r/i.) Equation (12) for the trajectory 
becomes 

3z )2 
+,7, - [ / 3 x + S ( n , ) (  2 = ' r / ,  - I ) ' / 2 ]  2 1. (17) 

tan On 

,,•cident beam 
x,=O x. SShx 

z~ - - - - ~  [surface 

ao 
z 

Fig. 3. Beam trajectories in the symmetric Bragg case: (1) rh/3 <0, 
(2) nJ3 > 0. 
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The beam path is deflected to the inside of the crystal 
if rh/3 > 0 and to the crystal surface if rh and /3 are 
of opposite signs (Fig. 3). In the latter case the coor- 
dinates of the apex of the hyperbolic trajectory are 
given by 

x,, _S(rh) ( 2 i/2/ = r / , -  1) /3 (18) 

z~= - ( t a n  OM/3)[rh-S(rt~)]. (19) 

Note that in the symmetric case the apex A of the 
hyperbola is always reached in the middle part of the 
trajectory so that 

xe=Zx,,, (20) 

where Xe is the coordinate of the beam exit point (the 
'range' of the deflected beam). Furthermore, using 
(4), (5), (19) and (20) one easily obtains 

sc~ = 1/~,, (21) 

where ~, is the value of ~¢ at the beam exit point. 

( d) Intensities in the Bragg case 

In the Bragg case the incident beam of intensity Io 
is partly reflected at the entrance surface with an 
intensity Iha (Fig. 4). The rest of the intensity Ii goes 
into the only wavefield which propagates in the crys- 
tal. Using boundary conditions and the principle of 
conservation of energy one gets: 

i, I~:,12 lha I~:,12 
I0--1 13,1' I0-- 13,1' (22) 

sc~ is the value of the parameter ~ at the entrance 
surface and 3' the ratio 3,0/3,h. 

If there is no absorption the intensity is conserved 
along the beam. If the absorption is not negligible 
the intensity at the exit of the beam le is given by 
(Malgrange, 1975) 

~ =  exp ( -  (/ZoX/COS I~ OB){I~:(1//3x)IX,h/X,o] 

×log[a~ +(1 +a~ ) l / 2 ] l  ~ 
i_a, +(1 + ~ 2 ) ~ j j ]  (23) 

or equivalently 

le 
~/= exp { -  (/ZoX/COS On) 

xEl-(1//3x)lx,h/x,ol log ~J~,]}, (24) 

Fig. 4. Beams issuing from an incident beam of intensity Io in the 
Bragg case. 

where/z0 is the linear absorption coefficient, ae and 
~:e are the respective values of a and ~: at the beam 
exit point. There, the intensity is split among the 
reflected beam in the air of intensity lhe and a wave- 
field of intensity/j  reflected inside the crystal. Using 
boundary conditions and the energy conservation 
principle one gets: 

the_ l  13,1 ~ _  13,1 (25) 
Ie I~:~t =' I~ t~,1 =" 

In the special case of symmetric reflection and zero 
absorption (21), (22), (24) and (25) give 

Iha the 
Io - I~:'1=' t o  = (1 -I  ~:,1=) =, 

Ii 
~=Io (1-1~,12)1~,1== 1~,127o . 

The wavefield reflected at the beam exit towards the 
inside of the crystal propagates along a hyperbolic 
trajectory as the initial wavefield. It is reflected for 
the second time at the crystal surface and so on, in 
an analogous manner to a wave in a wave guide but 
its intensity decreases rapidly (1~,1 is less than 1), the 
more rapidly the greater In, I. 

3. Numerical techniques used in the 
computer experiment 

The X-ray diffraction in the Bragg case for a thick 
crystal distorted by a constant strain gradient/3 was 
treated rigorously by Chukhovskii, Gabrielyan & 
Petrashen' (1978) who formulated the solution in the 
integral form of the Huyghens-Fresnel principle and 
obtained the exact Green-Riemann functions suitable 
for a general analysis of the problem. They demon- 
strated that the solutions for one type of wavefield 
was of a 'waveguide' nature; energy was transported 
in a channel parallel to the surface, undergoing suc- 
cessive reflections from both walls of the channel. 
The description in terms of geometrical optics given 
in § 2 (Fig. 4) is in good agreement with these results. 
As the intensity of the beam which is internally reflec- 
ted at the point E (Fig. 3) of the surface (upper wall 
of the channel) does not exceed 7% of the incident 
intensity in the symmetric Bragg case if 1,7,1> 2 [cf. 
(25)], practically it is sufficient to deal only with a 
single trajectory ( IAE in Fig. 3). 

( a ) Numerical integration of  Takagi's equations 

Since the mathematical form of the rigorous sol- 
ution of Chukhovskii, Gabrielyan & Petrashen' (1978) 
is rather complicated, in the present work we choose 
to solve Takagi's equations numerically using the 
method of half-step derivative due to Authier, Mal- 
grange & Tournarie (1968). The algorithm is des- 
cribed in detail in the above reference; in the Bragg 
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case it was applied for the first time by Bedynska 
(1973) who calculated the intensity distribution of 
the diffracted beam f o r a  thick crystal with a screw 
dislocation normal to the surface, using the following 
plane-wave boundary conditions (Fig. 5): (1) D =  1 
on AB; (2) Do and Dh according to dynamical theory 
for perfect crystals along AS. 

The calculations were made line by line parallel to 
the So axis. As the incident wave was assumed to be 
plane and the distortion field in that case was con- 
siderable only in the immediate vicinity of the disloca- 
tion line, such a choice of boundary conditions was 
perfectly justified. In the present calculations, 
however, we cannot assume an incident plane wave; 
the beam suitable for geometrical optics studies has 
to be limited in size (but not too narrow if effects due 
to diffraction in the optical sense are to be minimized). 
We found it a good compromise to perform the calcu- 
lations using a beam with a Gaussian distribution of 
the incident amplitude D along the crystal surface: 

D( x ) = exp {-4x2/o-2}, 

since a Gaussian wave packet does not change shape 
appreciably in the crystal (Penning, 1966). On the 
other hand, it represents quite well the physical reality 
of incident beams which can be obtained in the 
experimental practice (Bonse & Graeff, 1973) and it 
falls off very quickly away from the maximum (D is 
of the order of 10 -7 for Ix] = 20-). Thus, we can put 
simply Do = Dh = 0 as the boundary conditions along 
the so characteristics (AS) if the starting point A of 
the integration network is chosen sufficiently far away 
from the point of incidence I of the center of the 
beam. Then the parasitic transient solutions which 
appear initially due to this choice of boundary condi- 
tions practically do not influence the values of Do 
and D h in the important part of the integration 
network and the correct values are established 
quickly. We found that it was sufficient to choose the 
starting point A at a distance of 2o- from the incident 
point I of the center of the beam to reduce any 

Fig. 5. The integration network in the Bragg case (after Bedynska, 
1973). The Gaussian shape of the incident-beam amplitude is 
schematically shown. The boundary conditions along AS  are: 
Do = Dh = 0. Calculations are made line by line parallel to AS. 
The values of Do and Dh at a point Q are determined from 
those at P and R. 

perceptible effect of the boundary conditions along 
AS on the final solution down to the level of the 
integration accuracy. All the calculations were per- 
formed with data corresponding to the physical case 
of a 444 symmetric reflection in a silicon single crystal, 
with Mo Ka~ radiation (0B=26.9°);  for simplicity 
the absorption coefficient was put equal to zero. 

( b ) Visualization of  wavefield propagation 

The propagation of wavefields in the deformed 
crystal can be studied in the most natural way when 
complete maps of the field intensity in the crystal 
interior (i.e. in the Borrmann triangle) are obtained 
as the output of the numerical solution of Takagi's 
equations. The intensity at any point of the integra- 
tion network is calculated as the length of the local 
Poynting vector: 

P= ( c/ eo)(IDol2So +lDhl=Sh) (26) 

and recorded line by line in the computer memory. 
The recordings are then transformed into intensity 
maps with the aid of some representation technique 
(lines of equal value, shades, etc.). In the present 
work the visualization procedure due to Epelboin 
(1978) was employed (courtesy Y. Epelboin); the 
maps were obtained first as images on the Tektronix 
TV screen and then printed on the Versatec half-tone 
printer. The values of intensity are represented by 
different grades of white, a black spot meaning very 
little or no intensity. As an example, a series of such 
maps calculated for a given value of /3 and three 
different values of r/i is shown in Fig. 6. Obviously, 
the principal characteristics of the beam propagation 
(hyperbolic trajectory) are easily recognizable on 
these images. 

In order to extract synthetic quantitative data from 
our numerical calculations we developed also another 
technique of analyzing the beam trajectory. The 
method which could be simply called 'ray tracing via 
Takagi's equations' is demonstrated schematically in 
Fig. 7. It is based on the definition of the direction 
of propagation as the local direction of Poynting's 
vector which is given by the formula 

I -I~:12 
tan q~- 1 +'~ :'2 t a n l l  0•, (27) 

q~ being the angle between the direction of propaga- 
tion and the reflecting planes. 

An additional numerical procedure, inserted into 
the algorithm of integration of Takagi's equations, 
uses (27) explicitly to determine the local direction 
of propagation. It starts by calculating the initial 
direction Po of Poynting's vector at the incidence 
point Io. The value of ~(Io) is calculated from the 
definition (3). At the same time the coordinates of 
the point Q~ where the calculated Poynting's vector 
(Po) intersects the next line of the network are deter- 
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mined; the nearest point on the new line ( I  1) is taken 
as the next point of the trajectory. There again the 
local value of ¢(Ii) and consequently the new local 
direction of Poynting's vector (PI) are determined. 
This procedure is repeated iteratively as long as 
necessary (in the cases treated here until the crystal 
surface is reached). As the integration step used is 
very small (less than 1 I~m) compared to the 
dimensions of the network, the whole trajectory 
obtained in this way is quasi-continuous. 

Fig. 6(d) shows trajectories obtained by this 
method for the cases shown in Figs. 6(a),  (b) and 
(c). A good correspondence with the intensity maps 
is easily seen. The trajectories are indeed sections of 
hyperbolae as predicted by the geometrical theory 
(§ 2) and some important parameters are more readily 
deducible (the coordinates x,,, z,, of the apex of the 
hyperbola) than from the mapping method. Besides, 
it is quicker and needs no visualization technique 
(apart from the facultative use of a plotter). Therefore, 
it proved to be more suitable for verification of the 
geometrical theory which was one of the aims of this 
study (§ 4). On the other hand, it is obviously less 
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Fig. 6. Intensity distribution inside the crystal deformed with a 
constant strain gradient/3 =/3c versus the incidence parameter 
rh: (a)  r h = - 3 ,  (b) r h = - 4 ,  (c) r h = - 5 .  The intensity maps 
were printed on the Versatec half-tone printer using the pro- 
cedure due to Epelboin (1978) (courtesy Y. Epelboin). Here 
black means no intensity. (d) Corresponding beam trajectories 
obtained by the method of ray tracing via Takagi's equations. 

general than the method of visualization in the form 
of intensity maps and it fails in the case of strong 
deformation when the phenomenon of wavefield 
creation becomes important. Then trajectories 
obtained by this method become meaningless as the 
numerical procedure cannot choose between the 
newly created and deflected beams. In such cases 
(Gronkowski & Malgrange, 1984) only the direct 
technique of intensity mapping was applied. 

4. Results and conclusions 

The method of ray tracing using Takagi's equations 
described in § 3 was applied to verify the predictions 
of the geometrical theory (§ 2) for a crystal with a 
constant strain gradient in the symmetric Bragg case. 
In order to simplify the interpretation, calculations 
for the simple case of pure bending of lattice planes 
with a radius of curvature R are presented, but the 
same numerical results were obtained also for more 
complex cases (bending+latt ice spacing gradient) 
corresponding to the same value of ft. 

We found that the method of ray tracing gave good 
results for values of I~1 not exceeding I~1 = 2 tic, where 
tic is the critical value introduced by Authier & Balibar 
(1970): 

flc= ~'/2A, 

A = ;t cos 08/C (Xh Xa) 1/2 being the extinction length. 
For such cases the intensity of the newly created 
wavefields was less than 5% of the incident one (see 
Gronkowski & Malgrange, 1984). A series of trajec- 
tories with various r/i were obtained for each of the 
three values of the strain gradient chosen for the 
calculations, viz fl = 0.4tic, fl = tic and fl = 2tic, 
respectively. Together with the complete trajectories 
(as those in Fig. 6d) the coordinates (xa, za) of their 
apices were obtained. 

The results are summarized in Fig. 8 where the 
values of xe and z~ obtained using Takagi's equations 
(points) are compared to those (solid lines) calculated 
according to the geometrical theory [from (20), (18) 
and (19), respectively]. Very good agreement is 
readily seen and consequently the utility of the ray- 
tracing method is demonstrated. 

I0 

I1 

Sh 

Fig. 7. Principle of the ray-tracing method. A fragment of the 
integration network (Fig. 5) is shown. Pi local Poynting vector, 
Qi+l its intersection point with the next line, Ii÷ 1 the nearest 
point of  the network which is chosen as the next point of  the 
trajectory. 
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In conclusion it has to be stressed that the 
geometrical optics theory can be applied in all cases 
where beams can be defined (i.e. if the imaginary part 
of ~ is small compared to its real part) and for any 
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strain gradient which is a smooth function of the 
coordinate along the reflecting planes. Although it 
does not take into account the phenomenon of new 
wavefield creation ('interbranch scattering'), its basic 
equations are still valid for a separate description of 
the trajectories of  the original wavefield and the new 
one. This is demonstrated in the following paper 
(Gronkowski & Malgrange, 1984) which deals with 
strongly distorted crystals where the creation of new 
wavefields plays a significant role. It is shown in 
particular that this phenomenon takes place whenever 
the tie point of a wavefield passes through the apex 
of its proper branch of  the dispersion surface (i.e. 
whenever a = 0). The new wavefield extracts a frac- 
tion exp (-2~r/l~ol) out of  the original intensity, with 
ao proportional to the value of the strain gradient in 
the region where the creation occurs. It is then demon- 
strated that, provided one takes into account creation 
of new wavefields, geometrical optics is a quite gen- 
eral tool for the description of X-ray propagation in 
distorted crystals. 
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Fig. 8. Comparison between the values of  xe (a) and za (b) obtained 
from geometrical optics [from (20) and (19) respectively - solid 
lines] and those calculated from Takagi's equation (points) using 
the ray-tracing method described in § 3. As/3 > 0, T/i was taken 
negative. 
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